Scientists peel away the mystery behind gold's catalytic prowess
Gold particles measuring less than 5 nanometers in diameter possess a high level of catalytic activity when they are deposited on metal-oxide supports, Haruta learned. One nanometer (nm) is equal to one one-billionth of a meter, or about the width of five atoms.
In particular, Haruta found that gold nanoparticles are effective at catalyzing the critical conversion of toxic carbon monoxide (CO) into more benign carbon dioxide (CO2) at room temperature and even at temperatures as low as -76 degrees C. CO oxidation is vital to firefighters and others who must enter burning buildings, and it is also critical to the protection of hydrogen fuel cells from CO contamination.
In the two decades since Haruta's discovery, scientists have sought to determine exactly how gold nanoparticles function as catalysts.
Now, researchers from Lehigh University in Bethlehem, Pa., and Cardiff University in the UK believe they have pinpointed the active species at which the critical oxidation reaction occurs when gold is supported on iron oxide.
read more on Scientists peel away the mystery behind gold's catalytic prowess
In particular, Haruta found that gold nanoparticles are effective at catalyzing the critical conversion of toxic carbon monoxide (CO) into more benign carbon dioxide (CO2) at room temperature and even at temperatures as low as -76 degrees C. CO oxidation is vital to firefighters and others who must enter burning buildings, and it is also critical to the protection of hydrogen fuel cells from CO contamination.
In the two decades since Haruta's discovery, scientists have sought to determine exactly how gold nanoparticles function as catalysts.
Now, researchers from Lehigh University in Bethlehem, Pa., and Cardiff University in the UK believe they have pinpointed the active species at which the critical oxidation reaction occurs when gold is supported on iron oxide.
read more on Scientists peel away the mystery behind gold's catalytic prowess